40 research outputs found

    Modeling the combustion of light alcohols in spark-ignition engines

    Get PDF
    The use of light alcohols in spark-ignition engines is an interesting option to decarbonize transport and secure the energy supply. Experimental testing has produced promising results. However, the complexity of today’s engines makes simulation models indispensable. Existing models are generally only valid for gasoline operation. The aim of this research was therefore to formulate a model for engines running on methanol and ethanol. The study mainly focused on characterizing the effects of turbulence and chemistry on the in-cylinder combustion of these fuels. Reliable data for the burning velocity in the presence and absence of turbulence was obtained using chemical kinetics’ calculations in addition to experimental measurements on two different setups: a flat flame burner at Lund University (Sweden) and a fan-stirred combustion vessel at Leeds University (UK). One of the main advantages of light alcohols compared to gasoline is their elevated resistance to engine knock. To enable computational quantification of this advantage, a knock prediction model was built for these fuels based on chemical kinetics’ calculations of their autoignition delay time. A final step consisted of implementing the submodels for normal, turbulent combustion and abnormal, knocking combustion in an engine simulation code. This code was successfully validated against experimental results obtained on different flex-fuel and dedicated alcohol engines

    Temperature dependence of the Laminar burning velocity of methanol flames

    Get PDF
    To better understand and predict the combustion behavior of methanol in engines, sound knowledge of the effect of the pressure, unburned mixture temperature, and composition on the laminar burning velocity is required. Because many of the existing experimental data for this property are compromised by the effects of flame stretch and instabilities, this study was aimed at obtaining new, accurate data for the laminar burning velocity of methanol–air mixtures. Non-stretched flames were stabilized on a perforated plate burner at 1 atm. The heat flux method was used to determine burning velocities under conditions when the net heat loss from the flame to the burner is zero. Equivalence ratios and initial temperatures of the unburned mixture ranged from 0.7 to 1.5 and from 298 to 358 K, respectively. Uncertainties of the measurements were analyzed and assessed experimentally. The overall accuracy of the burning velocities was estimated to be better than ±1 cm/s. In lean conditions, the correspondence with recent literature data was very good, whereas for rich mixtures, the deviation was larger. The present study supports the higher burning velocities at rich conditions, as predicted by several chemical kinetic mechanisms. The effects of the unburned mixture temperature on the laminar burning velocity of methanol were analyzed using the correlation uL = uL0(Tu/Tu0)α. Several published expressions for the variation of the power exponent α with the equivalence ratio were compared against the present experimental results and calculations using a detailed oxidation kinetic model. Whereas most existing expressions assume a linear decrease of α with an increasing equivalence ratio, the modeling results produce a minimum in α for slightly rich mixtures. Experimental determination of α was only possible for lean to stoichiometric mixtures and a single data point at equivalence ratio= 1.5. For these conditions, the measurement data agree with the modeling results

    Alternative fuels for spark-ignition engines: mixing rules for the laminar burning velocity of gasoline-alcohol blends

    Get PDF
    Experimental measurements of the laminar burning velocity are mostly limited in pressure and temperature and can be compromised by the effects of flame stretch and instabilities. Computationally, these effects can be avoided by calculating one-dimensional, planar adiabatic flames using chemical oxidation mechanisms. Chemical kinetic models are often large, complex and take a lot of computation time, and few models exist for multi-component fuels. The aim of the present study is to investigate if simple mixing rules are able to predict the laminar burning velocity of fuel blends with a good accuracy. An overview of different mixing rules to predict the laminar burning is given and these mixing rules are tested for blends of hydrocarbons and ethanol. Experimental data of ethanol/n-heptane and ethanol/n-heptane/iso-octane mixtures and modeling data of an ethanol/n-heptane blend and blends of ethanol and a toluene reference fuel are used to test the different mixing rules. Effects of higher temperature and pressure on the performance of the mixing rules are investigated. It was found that simple mixing rules that consider only the change in composition are accurate enough to predict the laminar burning velocity of ethanol/hydrocarbon blends. For the blends used in this study, a Le Chatelier's rule based on energy fractions is preferable because of the similar accuracy in comparison to other mixing rules while being more simple to use

    On the applicability of empirical heat transfer models for hydrogen combustion engines

    Get PDF
    Hydrogen-fuelled internal combustion engines are being investigated as an alternative for current drive trains because they have a high efficiency, near-zero noxious and zero tailpipe greenhouse gas emissions. A thermodynamic model of the engine cycle would enable a cheap and fast optimization of engine settings for operation on hydrogen, facilitating the development of these engines. The accuracy of the heat transfer submodel within the thermodynamic model is important to simulate accurately the emissions of oxides of nitrogen which are influenced by the maximum gas temperature. These emissions can occur in hydrogen internal combustion engines at high loads and they are an important constraint for power and efficiency optimization. The most common heat transfer models in engine research are those from Annand and Woschni. These models are developed for fossil fuels, which have different combustion properties. Therefore, they need to be evaluated for hydrogen. We have measured the heat flux and the wall temperature in an engine that can run on hydrogen and methane. This paper describes an evaluation of the models of Annand and Woschni, using those heat flux measurements and assesses if the models capture the effect of changing combustion and fuel properties. The models fail on all the tests, so they need to be improved to accurately model the heat transfer generated by hydrogen combustion
    corecore